31 research outputs found

    Main Characteristics of Dust Storm sand Their Radiative Impacts: With a Focuson Tajikistan

    Get PDF
    Dust storms are commonly occurring phenomena in Tajikistan. The known aridity of the region is a major factor in promoting numerous dust storms. They have many diverse impacts on the environment and the climate of the region. The classification of dust storms and synoptic conditions related to their formation in Central Asia are discussed in the content of their diverse impact. We address dust optical properties that are representative of the region. Dust storms significantly reduce visibly and pose a human health threads. They also cause a significant impact on the radiative regime. As a result, dust storms may cause a decrease in temperature during daytime of up to 16 о С and an increase in temperature during night time from up to 7 о С compared to a clear day.

    Improvement and Application of Atmospheric Radiative Transfer Models for Prediction of the Climatic Effects of Aerosol

    Get PDF
    This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models. To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications, we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols

    Large Scale Climate Oscillation Impacts on Temperature, Precipitation and Land Surface Phenology in Central Asia

    Get PDF
    Central Asia has been rapidly changing in multiple ways over the past few decades. Increases in temperature and likely decreases in precipitation in Central Asia as the result of global climate change are making one of the most arid regions in the world even more susceptible to large-scale droughts. Global climate oscillations, such as the El Ni ̃no–Southern Oscillation, have previously been linked to observed weather patterns in Central Asia. However, until now it has been unclear how the different climate oscillations act simultaneously to affect the weather and subsequently the vegetated land surface in Central Asia.We fit well-established land surface phenology models to two versions of MODIS data to identify the land surface phenology of Central Asia between 2001 and 2016. We then combine five climate oscillation indices into one regression model and identify the relative importance of each of these indices on precipitation, temperature, and land surface phenology, to learn where each climate index has the strongest influence. Our analyses illustrate that the North Atlantic Oscillation, the East Atlantic/West Russia pattern, and the AtlanticMulti-Decadal Oscillation predominantly influence temperature in the northern part of Central Asia.We also show that the Scandinavia index and the Multivariate ENSO index both reveal significant impacts on the precipitation in this region. Thus, we conclude that the land surface phenology across Central Asia is affected by several climate modes, both those that are strongly linked to far northern weather patterns and those that are forced by southern weather patterns, making this region a \u27climate change hotspot’ with strong spatial variations in weather patterns.We also show that regional climate patterns play a significant role in Central Asia, indicating that global climate patterns alone might not be sufficient to project weather patterns and subsequent land surface changes in this region

    Introduction to special section: Outstanding problems in quantifying the radiative impact of mineral dust

    Get PDF
    International audienceThis paper provides an introduction to the special section of the Journal of Geophysical Research on mineral dust. We briefly review the current experimental and theoretical approaches used to quantify the dust radiative impacts, highlight the outstanding issues, and discuss possible strategies to overcome the emerging problems. We also introduce the contributing papers of this special section. Despite the recent notable advances in dust studies, we demonstrate that the radiative effects of dust remain poorly quantified due to both limited data and incomplete understanding of relative physical and chemical processes. The foremost needs are (1) to quantify the spatial and temporal variations of dust burden in the atmosphere and develop a predictive capability for the size‐ and composition‐resolved dust particle distribution; (2) to develop a quantitative description of the processes that control the spatial and temporal variabilities of dust physical and chemical properties and radiative effects; (3) to develop new instrumentation (especially to measure the dust particle size distribution in a wide range from about 0.01 μm to 100 μm, scattering phase function and light absorption by dust particles); and (4) to develop new techniques for interpreting and merging the diverse information from satellite remote sensing, in situ and ground‐based measurements, laboratory studies, and model simulations. Because dust distribution and effects are heterogeneous, both spatially and temporally, a promising strategy to advance our knowledge is to perform comprehensive studies at the targeted regions affected by mineral dust of both natural and anthropogenic origin

    The Northern Eurasia Earth Science Partnership: An Example of Science Applied to Societal Needs

    Get PDF
    Northern Eurasia, the largest landmass in the northern extratropics, accounts for ~20% of the global land area. However, little is known about how the biogeochemical cycles, energy and water cycles, and human activities specific to this carbon-rich, cold region interact with global climate. A major concern is that changes in the distribution of land-based life, as well as its interactions with the environment, may lead to a self-reinforcing cycle of accelerated regional and global warming. With this as its motivation, the Northern Eurasian Earth Science Partnership Initiative (NEESPI) was formed in 2004 to better understand and quantify feedbacks between northern Eurasian and global climates. The first group of NEESPI projects has mostly focused on assembling regional databases, organizing improved environmental monitoring of the region, and studying individual environmental processes. That was a starting point to addressing emerging challenges in the region related to rapidly and simultaneously changing climate, environmental, and societal systems. More recently, the NEESPI research focus has been moving toward integrative studies, including the development of modeling capabilities to project the future state of climate, environment, and societies in the NEESPI domain. This effort will require a high level of integration of observation programs, process studies, and modeling across disciplines

    Characterization of mineral dust aerosols to improve predictions of their impact on the radiative balance of the atmosphere

    Get PDF
    Issued as final reportUnited States. Dept. of Commerc

    Improving prediction of climate radiative forcing of atmospheric mineral dust using the CALIPSO space lidar data in conjunction with passive remote sensing and modeling

    Get PDF
    Issued as final reportUnited States. National Aeronautics and Space Administratio

    Analysis of Dust Aerosol Retrievals Using Satellite Data in Central Asia

    No full text
    Several long-term monitoring of aerosol datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra/Aqua, Multi-angle Imaging SpectroRadiometer (MISR), Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) were used to derive the dust aerosol optical depth (DOD) in Central Asia based on the Angstrom exponent parameter and/or the particle shape. All sensors agree very well on the interannual variability of DOD. The seasonal analysis of DOD and dust occurrences identified the largest dust loading and the most frequent dust occurrence in the spring and summer, respectively. No significant trend was found during the research period in terms of both DOD and the dust occurrence. Further analysis of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) aerosol products on a case-by-case basis in most dust months of 2007 suggested that the vertical structure is varying in terms of the extension and the dust loading from one event to another, although dust particles of most episodes have similar physical characteristics (particle shape and size). Our analysis on the vertical structure of dust plumes, the layer-integrated color ratio and depolarization ratio indicates a varied climate effect (e.g., the direct radiative impact) by mineral dust, dependent on the event being observed in Central Asia

    The Impacts of Smoke Emitted from Boreal Forest Wildfires on the High Latitude Radiative Energy Budget—A Case Study of the 2002 Yakutsk Wildfires

    No full text
    We examine the 2002 Yakutsk wildfire event and simulate the impacts of smoke aerosols on local radiative energy budget, using the WRF-Chem-SMOKE model. When comparing satellite retrievals (the Surface Radiation Budget (SRB) dataset) with model simulations, we found that the agreement is generally good, except for the regions where the model predicts too few clouds or SRB misclassifies strong smoke plumes as clouds. We also found that the smoke-induced changes in upward shortwave fluxes at top of atmosphere (TOA) vary under different burning and meteorological conditions. In the first period of the fire season (9–12 August), smoke particles cause a warming effect around 3 W/m2, mainly through functioning as ice nuclei, which deplete the cloud water amount in the frontal system. At the beginning of the second period of the fire season (19–20 August), large amounts of pre-existing smoke particles cause a strong cooling effect of −8 W/m2. This is offset by the warming effect caused by relatively small amounts of cloud condensation nuclei increases, which promotes the rain formation and depletes the cloud water amount. After the cloud decks are well mixed with smoke plumes (21–22 August), the first indirect and direct effects of smoke together lead to a cooling of −10 W/m2. These results highlight the importance of meso-scale modeling efforts in estimating the smoke-induced changes in the radiative energy budget over high latitudes

    Developing a Dust Emission Procedure for Central Asia

    No full text
    Airborne mineral dust is thought to have a significant influence on the climate through absorbing and scattering both shortwave and longwave radiations and affecting cloud microphysical processes. However, a knowledge of long-term dust emissions is limited from both temporal and spatial perspectives. Here, we have developed a quantitative climatology: the column-integrated mass of the dust aerosol loading in Central Asia by incorporating the dust module (DuMo) into the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model and accounting for regional climate and Land-Cover and Land-Use Changes for the 1950-2010 period in April. This data set is lowly to moderately correlated (0.22-0.48) with the satellite Aerosol Optical Depth in April of the 2000s and lowly correlated (0.02-0.11) with the Absorbing Aerosol Index in April of the 1980s, 1990s, and 2000s. The total dust loading is approximately 207.85 Mton per month in April during the recent decade (2000-2014) over dust source regions. Although only the month of April was simulated, results suggest that trends and magnitudes are captured well, using the WRF-Chem-DuMo
    corecore